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FOREWORD

The enclosed presents the results of work performed by Northrop Space
Laboratories, Huntsville Department, while under contract to the Aero-
Astrodynamics Laboratory of Marshall Space Flight Center (NAS8-20082).
This task was conducted in response to the requirement of Appendix E-1,
Schedule Order No. 10. Technical coordination was provided by Mr. Jesco

von Puttkamer of the Technical and Scientific Staff (R-AERO-T).
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ABSTRACT

This report presents the results of an analytical study to develob‘the
logic for a digital computer subroutine for the automatic computation of launch
opportunities, or the sequence of launch times, that will allow execution of
various modes of gross circular orbit rendezvous. The equations developed in

this study are based on two-body orbitat theory.

The Earth has been assumed to have the shape of an oblate spheroid. Oblateness
of the Earth has been accounted for by assuming the circular target orbit to be space-
fixed and by correcting the ro:tational rate cf the Earth accordingly. Gross
rendezvous between the target vehicie and a maneuverable chaser vehicle, assumed
to be a standard or uprated Saturn V iaunched from Cape Kennedy, is in this
study accomplished by: :} direct asceut to vrendezvous, or 2) rendezvous via

an intermediate circular parking orbit.

When operating, this subroutine wili determine the span or sequence of
launch times in which a chaser vehicie can be launched to accomplish a pre-
selected rendezvous missivne. The launch times will be restricted by such

mission constraints as:

1) Total propulsive veiccity change {AV) capabiiity of the chaser vehicle
2) Total allowable chaser flight time
3) Maximum time that can be speat by the chaser vehicle in a parking orbit

4) Range safety restrictions on the chaser vehicle's launch azimuth.

At this point in time, the subroutine is in a state ready for initial

»

programming and checkout.
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Symbol

(Az)uax

(A7) y1n

2B0

NOMENCLATURE

Definition

Semi-major axis
Semi-major axis of transfer ellipse 2

Chaser vehicle launch azimuth, measured

eastward from the launch site meridian
Maximum allowable launch azimuth
Minimum allowable launch azimuth

Chord comnecting points A or B and point C

of the third-stage-burn-model geometry
Eccentricity
Eccentricity of transfer ellipse 2

Eccentric anomaly of point A on the variable

coast ellipse

Eccentric anomaly of point B on the variable

coast ellipse

Eccentric anomaly of the point of orbital

transfer departure (point a)

Eccentric anomaly of the point of chaser second

stage burnout on the variable coast ellipse

.y

Units

deg, rad

deg, rad

deg, rad

rad

rad

rad

rad
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NOMENCIATURE (Continued)

Symbol Definition Units
E3 Eccentric anomaly of the point of orbital

transfer conic intersection with an orbit of

radius Rz,‘(point A) rad
E4 Eccentric anoﬁaly of the point of orbital

transfer conic intersection with an orbit of

radius R,, (point B) rad
F Chaser vehicle third-stage thrust kg
8, Acceleration due to gravity at the Earth's

surface, (go = 9.8045016 m/secz) -
GMT Greenwich mean time sec
GHAY Greenwich hour angle of the vernal equinox,

measured westward from the prime meridian deg
ip Target orbit inclination deg
J Earth oblateness constant, (J = 1.,62345 x 10-3) -
K Number of completed target revolutions at the

launch delay time, relative to the ascending

node of the target orbit -
LHA Local hour angle, measured westward from the

launch site meridian deg
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Symbol
LHAY

280

NOMENCLATURE (Continued)

Definition
Local hour angle of the vernal equinox,

measured from the launch site meridian

Mass of the chaser vehicle at second-stage burnout
Integer number of mean solar days

Mean anomaly of the apogee

Mean anomaly of point A on the variable

coast ellipse

Mean anomaly of point B on the variable

coast ellipse
Integer number of Earth revolutions

Mean anomaly of the point of orbital transfer

departure (point a)

Mean anomaly of the point of chaser second-stage

burnout on the variable coast ellipse

Mean anomaly of the point of orbital transfer
conic intersection with an orbit of radius R2,

(point A)

3
v 4

Units

deg

rad

rad

rad

rad

rad

rad
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Symbol

(P)LP

2B0

NOMENCLATURE (Continued)
Definition

Mean anomaly of the point of orbital transfer

conic intersection with an orbit of radius R2,~

(point B)

Number of target revolutions completed at the
launch delay time, relative to the target!'s

position at the reference time

Number of target revolutions per Earth rotation
Semi-latus rectum

Target orbital period

Limiting parabola semi-latus rectum

Ratio of the square of the chaser second-stage
burnout velocity to the square of the circular

orbit velocity at the burnout radius
Parking orbit radius
Target orbit radius

Chaser second-stage burnout tradius

Units

rad

sec
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NOMENCLATURE (Continued)

Symbols Definition Units
Ra Apogee radius m
RGOLN Radius to the point the chaser crossed the orbital

line of nodes m
Re Earth equatorial radius,

(Re = 6.378165 x 106m) -
Rp Perigee radius m
SHA Sidereal hour angle deg
tCC Flight time from chaser third-stage

shutdown to target orbit interception sec
tlo Flight time from chaser third-stage

shutdown to target orbit interception,

assuming a yaw maneuver is performed sec
(td)n Launch delay time sec
(£), Launch delay time in the true mean

solar day sec
(tEC)A Chaser flight time from second-stage burhout

to interception of the variable coast ellipse
with a circular orbit of radius R1 or R2,

(point A) sec

ix
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NOMENCLATURE (Continued)

Symbols Definition Units
(tEC)B Chaser flight time from second-stage ‘burnout

to interception of the variable coast ellipse

with a circular orbit of radius R1 or R2,

(point B) sec
(tF)a Total chaser ascent flight time sec
(t.) Maximum allowable chaser ascent flight time sec
Fia | MAX
(t.) Chaser flight time along orbital transfer ellipse 1 sec
F'E1
(ty) Chaser flight time along orbital transfer ellipse 2 sec
F'E2
(tF)CC Chaser flight time from second-stage burnout to:
target orbit interception sec
(tF)TC Flight time required for the target to coast from
its position at the time of chaser Second-stage
burnout to the orbital line of nodes, (for a
non-coplanar ascent trajectory mode) sec
(tF)TC Flight time required for the target to coast

from its position at the time of chaser second-stage
burnout to the point of gross rendezvous, (for the

coplanar ascent trajectory mode) sec
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Symbols

() reans

tr1cT
COAST

(t.)

F

FtF)MISSION]

Lpark

)

(tpark’Max

t128

MISSION

NOMENCLATURE (Continued)
Definition

Chaser orbital transfer time

Flight time from perigee to point a on the

orbital transfer conic

Flight time from perigee to point A on the

orbital transfer conic

Flight time from perigee to point B on the

orbital transfer conic

Coast time spend in the "fictitious"™

target orbit

Total chaser flight time required to accomplish

a given rendezvous mission

Maximum allowable missibn flight time

MAX

Chaser parking orbit time

Maximum allowable chaser parking orbit time

Chaser flight time from lift-off to second-stage

burnout

xi

Units

sec

sec

sec

sec

sec

sec

sec

sec

secC

sec
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Symbols

),

Vo)1

co

(vco>2B0

NOMENCLATURE (Continued)
Definition

Chaser third-stage-burn time

Time required for the launch site to rotate

through the central angle £

Time required for the launch site to rotate

through the central angle ¥,

Corrected mean solar day

True mean solar day (To = 86,164.099 sec )
Chaser velocity at apogee

Chaser velocity at the apogee of transfer

ellipse 1

Chaser velocity at the apogee of transfer

ellipse 2

Circular orbit velocity at radius R1

Circular orbit velocity at the chaser second-

stage burnout radius RZBO

xii

Units

secC

sec

sec

sec

m/sec

m/sec

m/sec

m/sec

m/sec
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Symbols
(v_))

0’3

Moo

VecIa

2BO

NOMENCLATURE (Continued)
Definition

Circular orbit velocity at radius R2

Chaser velocity at point a on the orbital

transfer conic

Chaser velocity at point A on the orbital

transfer conic

Chaser velocity at point B on the orbital

transfer conic

Chaser velozity at the perigee of transfer

ellipse 2

Velocity of the chaser at the time it crosses

the orbital line of nodes

Chaser veiccity at the point of intersection
of the variable coast ellipse with an orbit
; . or R
or radius RL 2
Chaser velocity at second-stage burmout

Whole number

Decimal

xiid

Units -

m/sec

m/sec

m/sec

m/sec

m/sec

m/sec

m/sec

m/sec
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Symbols

LS

2BO

(Vopods

(f 9307 Max

NOMENCLATURE (Continued)
Definition
Position of the target at the reference time,

relative to the ascending node

The central angle, measured in the target orxrbit
plane, from the ascending node to the position of

the launch site at the reference time (iT> 2)

Position of the target at the launch delay time,

relative to the ascending node

Chaser flight path angle at the point of inter-
section of the variable coast ellipse with a
circular orbit of radius R1 or RZ’ measured
from the local horizontal

Chaser flight path angle at point a on the

orbital transfer conic, measured from the local

horizontal

Chaser flight path angle at second-stage burnout,

measured from the local horizontal

Chaser flight path angle at second-stage burnout
that produces a coast ellipse with an apogee

equal to radius R, or RZ’ measured from the

1

local horizontal

Maximum second-stage burnout flight path angle

xiv

Units

deg, rad

rad

rad

rad

rad

rad

rad

rad
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Symbols

K950

Ln

A61

>
<

At

At

NOMENC LATURE (Cont inued)
Definition
Chaser fiight path angle at point A on the
orbital transfer conic, measured from the local

horizontal

Chaser flight path angle at point B on the
orbital transfer conic¢, measured from the local

horizontal
Vernal equinox
Plane change angle

Plane (hange angle after an impulsive yaw

maneuver has been performed

Chaser szcond-stage burnout flight path.angle

increment
Orbital transfer conic point of arrival increment
Orbital transfer major axis orientation increment

Angle of nodal regression per target orbital

revo lution
Target orbital period

Launch delay time increment

Units

rad

rad

rad

rad

rad

rad

rad

rad

sec

sec
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NOMENCLATURE (Continued)

" Symbols Definition Units
(AV)a Total chaser ascent impulsive velocity increment n/sec
[ (AV)a ]MAX Maximum allowable chaser ascent impulsive

velocity increment m/sec
(A‘V)CIR Impulsive velocity increment required to
circularize an orbit m/sec

(AV)MISSION Total chaser impulsive velocity increment
required to accomplish a given rendezvous

mission m/sec

[ (Wyrssion ) Maximum alilowable mission impulsive
MAX

velocity increment m/sec
(V) pe Chaser impulsive velocity increment required
to perform a plane change maneuver m/sec
(AV)TRANS Total chaser impulsive velocity increment
required to perform an orbital transfer maneuver m/sec
(av) Chaser impulsive velocity increment required
YAW P
to perform a yaw maneuver m/sec
(&) Chaser impulsive velocity increment required
Y P :
EC

to change the flight path angle to zero at the
point of intersection of the variable coast

ellipse with an orbit of radius R1 or R2 m/sec

xvi
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Symbols

(&) v280

AV
AV
AV

AV

CC

%c

O%corn

® ey

Chaser impulsive velocity increment required

to change the second-stage burnout flight path

angle

Chaser

Chaser

Chaser

Chaser

NOMENCLATURE {Comntinued}

Definition

impulsive

impulsive

impulsive

impulsive

velocity increment number

velocity increment number

velocity increment number

velocity increment number

Angle between point a and point A on the

orbital transfer conic

Range angle subtended by the chaser while

coasting from the point of third-stage shutdown

to target orbit or parking orbit interception

Range angle subtended by the chaser while

coasting from the point of third-stage shutdown

to target orbit interception, assuming a yaw

maneuver is performed

Position of the chaser at the end of the required

parking time relative to the orbital 1line of nodes

Range angle from the point of chaser second-stage burnout
to the point of intersection of the variable coast

ellipse (point A or B) with an orbit of radius R} or R3

xvii

Units

m/sec

m/sec

m/sec

m/sec

m/sec

rad

rad

rad

rad

rad
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Symbols

NT

TAN

(8ran’ 280

TOLN

(8rorn’ 280

TDN

NOMENCIATURE (Continued)
Definition

Total chaser intercept range angle

Central angle, measured in the target orbit plane,
from the launch site meridian, at the launch delay

time, to the orbital line of nodes
Sum of the central angles €y and &

Central angle, measured in the target orbit plane,
from the launch site meridian at the reference
time toc the launch site meridian at the launch

delay time

Position of the target, relative to the target
orbit ascending node, at the time the chaser

intercepts an orbit of radius R1 or R2

Position of the target, relative to the target

orbit ascending node, at the time of chaser

second~-stage burnout

Position of the target, relative to the orbital

line of nodes, at the time the chaser intercepts

an orbit of radius R1 or R2

Position of the target, relative to the orbital
line of nodes, at the time of chaser second-stage
burnout

Position of the target, relative to the deséen&ing
node, at the time the chaser intercepts the target

orbit

AVIELL

Units

deg, rad

rad

rad

rad

rad

rad

rad

rad

rad
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NOMENGLATURE (Continued)

Symbols Definition Units
91 True anomaly of the point of orbital transfer

departure (point a) rad
612B Range angle from chaser lift-off to second-stage

burnout rad
92 True anomaly of the point of intersection of

the "Limiting Parabola’with an orbit of radius R2 rad
63 True anomaly of the point of orbital transfer

conic intersection with an orbit of of radius RZ’

(point A) rad
93B Range angle subtended during chaser third-stage burn rad
64 True anomaly of the point or otbital transfer

conic intersection with an orbit of radius R2,

(point B) rad
A Launch site latitude deg
Ay Launch site longitude deg
Ap Latitude of the target orbit ground track at the launch

delay time rad

u Earth gravitational constant,

(M = 3.986016 x 104m3/se02)

wrd ar
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NOMENCLATURE (Continued)

Symbols Definition Units
€ Comp lementary central angle of ¥,, measured

in the equatorial plane rad
o Central angle, measured in the equatorial plane,

between the launch site meridian at the reference

time and the target orbit descending node rad

‘N True anomaly of point A on the variable coast

ellipse rad
¢B True anomaly of point B on the variable coast

ellipse rad
4&RANS Orbital transfer phase angle rad
qﬁRUE True phase angle rad
b Catch-up rate of the chaser vehicle rad/sec
B0 True anomaly of the point of chaser second-stage

burnout on the variable coast ellipse rad

Central angle, measured in the target orbit plane,
from the ascending node to the launch site meridian

at time (td)n rad

XX
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NOMENCLATURE ({Concluded)

Symbols Definition Units

v, Central angle, measured in the equatorial plane,
between the launch site meridian at the reference
time and the launch site meridian at the time of

the launch site's second passage through the

target orbit plane rad
wYAW Yaw angle rad
(wYAW)MAX Maximum yaw angle rad
o Corrected Earth rotational rate rad/sec

c

g True Earth rotational rate,

(u = 7.29211513 x 107 rad/sec) -
Wy Angular velocity of the chaser in a parking orbit rad/sec
W, Angular velocity of the target rad/sec
Q Angle through which the target coasts during the

chaseris orbital transfer maneuver rad
QIS Angular distance through which the launch site

rotates during a launch delay time, measured in
the equatorial plane from the launch site meridian

at the reference time rad

xxi
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SECTION 1

INTRODUCTION

As our national space effort increases, orbital rendezvous will play a
more predominant role. Earth-orbital rendezvous will be needed for such

missions as:

1. Construction of orbital space stations
2. Supply and maintenance of'space stations
3. Assembly of interplanetary space vehicles

4. Rescue operations.

Indications are that many of these and other missions will require not just
one but several consecutive launches. Thus, a method for determining the
sequence of Earth launch times required to accomplish various rendezvous

missions would be a useful tool for mission planning.

This report has been writtén‘to present the equations and logic required
for the development of a digital computer subroutine for determining the launch
opportunities for various types of gross circular orbit rendezvous missions.
Because of the Earth's oblateness, true circular orbits are in reality not
possible except around the equator. However, the problem of circular orbit
rendezvous has been attacked as a stepping stone or building block for the

more general problem of elliptical orbit rendezvous.

The problem of gross circular orbit rendezvous can be stated as follows:

1-1
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A non-maneuverable target vehicle is assumed to be orbiting the Earth
in a circular orbit of known orbital inclination and radius. Due to the
oblateness of the Earth, the target orbit plane precesses around the Earth's
polar axis in a direction opposite to tﬁe direction of the target vehicle
motion. However, the target orbit plane can be assuﬁed to beafixed‘in‘the

inertial space if the Earth's rotational rate is corrected accordingly.

Rendezvous‘between the orbiting target vehicle and an Earth-launched,
maneuverable chaser vehicle is said to be accomplished when the two vehicles
arrive simultaneously, with the same velocity and flight-path angle, at some
point in inertial space. The motion of the target, with respect to a rotating
launch site, places strong restrictions on the time during wﬁich the chaser
vehicle can be launched to achieve rendezvous. Thus emerges the term "launch
window". A launch window is a period or span of time in which the target
vehicle and the launch site are in favorable poéitions, allowing the chaser '

to be launched to accomplish gross rendezvous.

Circular orbit rendezvous can be accomplished by two general methods or

modes. These modes are:

1) Direct ascent to rendezvous
2) Rendezvous via an intermediate parking orbit (which is assumed to

be circular also).

Direct ascent to gross rendezvous is generally restricted to relatively small

launch windows. This is due to the fact that thektérget_and the chaser
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must be in approximately the same position at the time of the chaser's
injection into the target orbit. Small launch delay times can be compensated

for by slight variations-in the ascent trajectory itself.

Gross rendezvous accomplished by use of an intermediate parking orbit
permits longer launch windows. This is so because large launch delays
can be offset by remaining in the parking orbit until the phase angle between
the target and the chaser is of the correct magnitude to initiate an orbital

transfer maneuver.

Regardless of which rendezvous mode is used, the associated launch times
are restricted by the chaser launch vehicle's capabilities and various other

mission constraints.

1-3
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SECTION 2

ASSUMPTIONS AND DEFINITIONS

2.1 Earth Model
The Earth model assumed is a spimnning oblate spheroid.

2.1.1 Oblateness Effects

Due to the oblateness of the Earth, the elements of a target vehicle's
orbit are perturbed. The major effect of oblateness on an assumed circular
target orbit is precession of the orbital plane. This plane, and thus the
line of nodes, tends to precess about the Earfh's polar axis in a direction
opposite the general direction of motion of the orbiting target wvehicle.
Figure 1 illustrates regression of the line of nodes for an eastwardly

travelling target vehicle.

2.1.2 Earth Rotationél Rate

Regression of the line of nodes can be best compensated for, in a
first approximation, by assuming the target orbit plane to be fixed in inertial

spéce while the Earth rotates inside this orbit at a corrected rotational

‘rate wg The corrected Earth rotational rate can be defined by the equation

c
- A
w, =g X (2-1)
c
where
w_, = True Earth rotational rateﬂv:rad/sec

a¢ Regression of the target orbit's line of nodes per orbital period
~ radfsec,

2-1
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The term A¢ has been shown by Blitzer (ref. 3) to be expressed as

Re 2
Ad - 2m d ji; cos i (2-2)
The orbital period of the target vehicle is
3
2
H

At = 27 (2-3a)

The Earth gravitational constant,u,can also be expressed in terms of Earth

constants as

2
= g, Re .
Thus,
i R
ae =2n (2 [ 2 (2-3b)
e €o

A
Consequently, the term z% can be expressed as
cos ip (2-4)

For an eastwardly travelling target vehicle, the corrected Earth rotational

rate becomes

w o =w_ o+ J] == 2 cos i (2-5)

For westwardly travelling target vehicles w, <w
c

B
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2.2 Coordinate System

A.geocentric Earth equatorial coordinate system will be used as a reference
frame for fixing the target orbit plane.in inertial.space. This coordinate
system has its origin at the center of the Earth. The x-axis lies in the
equatorial plane andipdints toward the vernal equinox or first point of
Aries. The z~-axis coincidés with the Earth's spin axis, while the y-axis
completes the right-handed coordinate system. Figure 2 illustrates this

coordinate system.

2.3 Reference Time

The subroutine is designed to initiate a sequential launch window computa-
tion at some given reference time. Two such reference times will be define&.
When the target orbit inclination, iT’ is greater than the launch site
latitude, XA, the launch site passes through the target orbit plane twice
per day. In this case, the reference time is defined to be the Greenwich
mean time, (GMT or ZULU), on a given calendar date, when the.target orbit
ground-track pasées through the launch site with a northerly azimuth. However,

when i < A, the reference time is defined as the Greenwich mean time, on a

T
given calendar date, when the launch site is closest to the target orbit
plane. This time is referred to as the co-nodal instant because the launch

site meridian is midway between the ascending and descending nodes of the

target orbit. Figures 3 and 4 illustrate these two reference times.

The reference time is not only the time at which the launch window

investigation is initiated, but it also represents the time at which the

2-4
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target orbit piane is f.xed in inertial space. Thus, there is a need for a
method of determining the positian of the target'orbit plane, relative to the

tnertiatl coordinate system, at the reference time.

2.4 Position of the Target Orbit Plane at the Reference Time

With the reference time defined in terms of the Greenwich mean time (GMT or
ZUiU time), the Greenwicn hour angie of the vernal equinox (GHAY)* can be found
by consulting an ephemeris. This angle defines the position of the vernal

equinox with reference to the Greenwich hour circle,

The longitude of the launch site, measured westward from the prime
meridian, is defined by the symbol Ay e The local hour angle of the vernal

equinox (LHAY) from the launch site hour circlie can be determined by the

expressions
THAY = GHAY - A when Ao < GHAY < 2w
(2-6)
LHAY = 27 + (GHAY - ),) when 0 < GHAY < A,

Consider Figure 5. This figure illustrates the reference time when

iT > A. The iocal hour angie of the ascending node of the target orbit can

be found by the simple trigonometric relation

tan i

LHA = sin [ _tan A (2-7)
T

* Reference is made to Appendix A for the definitions of the terms used in
this section.



TARGET ORBIT i

N PLANE
Z
A PRIME
~ LAUNCH SITE , MERIDIAN
LATITUDE (GEENWICH)

. LAUNCH SITE

EARTH
EQUATORIAL
PLANE

VERNAL
EQUINOX

£~ ASCENDING NODE LINE OF NODES OF
THE TARGET ORBIT

TARGET ORBIT GROUND TRACK

Figure 5. TARGET ORBIT'S POSITION IN THE GEOCENTRIC
EQUATORIAL GOORDINATE SYSTEM



NORTHROP SPACE LABORATORIES

Hence, the sidereal hour angle (SHA) of the ascending node can be calculated
by one of the following expressions:

SHA = LHA - LHAY when XA < GHAY < {x -+ LHA)

°T. T e (2-8)

SHA = 2n + (LHA - LHAY) when O < GHAY < A
(A FLHA)<GHAY<2m

Thus, the SHA and iT determine the position of the target orbit plane relative
to the vernal equinox at the reference time. Calculation of the SHA, for a
target orbit with an inclination less than or equal to the launch site

latitude, 1is similar to the method presented above.

2.5 Launch Delay Time Scale

As the Earth rotates at a corrected rotational rate, the launch siteis rotated
relative to its position at the reférence time, Thus, a time scale is
needed to determine the position of the launch site at any given time. This
time scale shall be designated as the Launch Delay Time Scale and any given
time in this scale will be denoted by the symbol (td)n called launch delay

time, where

(egd, = (g0, T Ot (2-9)

d
n= 1,2939000

Atd = launch delay time increment.

The reference time is defined as

(td)n = 0.
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Ag (td)n is allowed to increase, the position of the launch site, relative

to its position at the reference time, can be determined by the expression

Qo= (wec)(td)n (2-10)

where
QLS = central angle through which the launch site rotates in the time
(),
n
The true mean solar day is defined to be the time reqﬁired for the Earth

to complete one revolution, or

1=2 (= 23" 56™ 4.099%) (2-11)

ey)

Because w, > Wps the corrected mean solar day becomes
c

N
5

-]
It

(2-12)

1=
1]

Thus, T < To’

The launch site completes one revolution around the Earth's polar axis when
(tg), =T

or
{2 = 2T

LS

The purpose of the launch delay time scale is to provide a basic reference
"clock!" in the automatic determination of the launch site's position during

the launch window computation. Thus, if it is desired to conduct an investigation

2-11
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%

for an integer number of true mean solar days, M, from the reference time,
the launch site must be allowed to rotate around the Earth's polar axis

for MT seconds or M(27) revolutions.

Launch windows, for various rendezvous modes, are then calculated by
determining if rendezvous can be accomplished at various values of Ctd)n’

until
(td)n = M(T).

If gross rendezvous is found to be achievable at any given launch delay time,
the value of (td)n must be corrected to its associated time in the true mean

solar day. This is accomplished by the'following simple expression:

w
e
, _ c
(td)n in the true mean solar day = (td)n ZE—
or
wec
(c) =(t,) — (2-13)
d'Pppyg 4" g

All values of the "true launch delay time", that permit gross rendezvous,

are then pieced together to give the span of permissible launch times (launch

window) in the true mean solar day.

2.6 Target Position at Given Launch Delay Time

The central angle measured, at the reference time, from the ascending node
of the target orbit to the position of the target vehicle is defined by the
symbol o where O La, < 2n. This angle defines the position of the target
vehicle in the orbital plane at the reference time (t:d)n = 0. The angle e

illustrated in Figure 6, is an input to the subroutine.
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In order to conduct a launch window investigation, the position of the
target relative to the ascending node must be known at any launch delay

time,(td)n.

The number of orbital revolutions completed by the target vehicle at any

launch delay time,(td)n,can be given by

(2-14)

The target's angular distance from the ascending node at any time (td)n can be

determined by
ap = o + N(27w) (2-15)

A parameter K is introduced which defines the number of completed target

revolutions at time (td)n’ relative to the ascending node, or

_ %
K= Ey (2-16)

Furthermore, K is a number composed of a whole number and a decimal. Thus,

K=X+Y (2-17)

where

X = whole number

<
Il

decimal.

* The nodal period of the target vehicle is not used in this expression
because the target orbit is assumed to be space-fixed. Thus, the nodal
period is the orbital period.

2-14
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The whole number X indicates the number of full revolutions completed by
the target at the time (td)n' The decimal Y indicates the fractional portion
of a revolution completed at time (td)n" Thus, the position of the target at

any launch delay time, relative to the ascending node, can be written as

op = Y(2m) (2-18)

where

O_iocT'_\‘ZTr.

2.7 Rendezvous Compatible Orbits

The term '"rendezvous compatibility" applies to target orbits having an

orbital inclination, i, greater than or equal to the launch site latitude, A.

T,
A rendezvous compatible orbit allows rendezvous to occur nearly directly over

the launch site either once or twice per day.

The altitude or radius of an orbiting target vehicle determines its
period. Thus, adjustment of altitude is sufficient to permit the target to
appear directly above or in the wvicinity of the launch site at the same times
on successive days. This is known as "once-a-day rendezvous compatibility"

and, in principle, is feasible for all inclinations equal to or greater than A.

However, if (for ip > 1) a second rendezvous per day is also desired,
the orbital inclination becomes of prime importance. "Twice-a-day rendezvous
compatibility" can be achieved only for discrete combinations of altitude and

inclination. These combinations of orbital parameters must be such that the

2-15
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target completes an integral number of revolutions, plus the arc from Points A
to B (Figure 7), during the time the launch site rotates from Point A to

Point B.

Swanson and Peterson (refs. 16 and 18) have shown that the rendezvous
compatibility of a target vehicle, travelling eastward in a circular orbit,

can be determined by the expression:

No To

vl , (2-19)
Mo 2"(R2)3/2 JRZ ) T JR2

1 - == (3.0-2.5 sin” i) | + cos i
R R2 T R T
8o “e 2 2
N
If the value of ﬁg » for a given target orbit, is an integer, the orbit
o

is said to be "twice-a-day rendezvous compatible!". That is to say, the target
will be located at the same position in its orbit on successive days. Thus,
the launch times required to achieve gross rendezvous with the target will

be the same on successive days. Consequently, the launch times permitting
rendezvous must be determined only for the first day of an M-day investigation.
These allowable launch times will then be valid for each successive day of.

N

, X , o . .
the investigation. I1f, however, ¥ 1s not an integer, the launch times allow-
o

ing rendezvous must be determined for each day of the investigation.
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SECTION 3

ANALYS IS

3.1 Direct Ascent to Circular Orbit Rendezvous

The general problem of direct ascent to citcular orbit rendezvous is

illustrated in Figure 8, and can be stated as follows:?

A target vehicle is assumed to be rgvolving around the Earth in a space-
fixed; circular orbit while the launch site, on the Earth's surface, rotates
beneath the target orbit at a corrected rotational rate. The optimum time to
launch a chaser vehicle is the instant the launch site passes through the

target orbit plane. This is sometimes called an on-time or coplanar launch.

A coplanar launch is advantageous from the standpoint of fuel consumption
because no plane change maneuver is required. Gross rendezvous can be accomplished
only if the target is located at a unique point in its orbit at the time of
launch of the chaser. However,; it is unrealistic to ignore possible launch
holds and to assume that the target will always‘be in the correct position to
allow a coplanar direct ascent launch. In case of a delay, the chaser must
be launched at some later time {launch delay time) via a non-coplanar ascent

trajectory.

If a non-coplanar direct ascent trajectory is used, gross rendezvous cannot
be accomplished unless the target's position is within some sector of its
orbit. This sector is a function of the target's orbital parameters, the ascent
trajectory, the launch azimuth, the plane change angle, and the chaser launch

vehicle's maneuver capabilities.
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3.1.1 Ascent Trajectory Modes

The reference time has been defined as zero in the Launch Delay Time
Scale. At wvarious launch delay times, the launch site is located at different
positions relative to the target orbit plane. This fact gives rise to a number
of geometrical relationships that occur between the launch site and the target
orbit plane. These relationships will be called Ascent Trajectory Modes.
They will be categorized according to the position of the launch site.at the

launch delay time and the target orbit inclination.

3.1.1.1 Coplanar Ascent Trajectory Mode

When the target orbit inclination is greater than the launch site
latitude, two optimum coplanar launch oppértunities occur daily. One opportunity
occurs when the target orbit ground-track passes through the launch site in
a northerly direction (reference time), the other when the ground-track passes
through the launch site in a southerly direction. The Coplanar Ascent
Trajectory Mode refers to the case where the chaser vehicle is launched directly
into the target orbit plane during one of the optimum launch opportunities.

Figure 9 illustrates both cases of this ascent trajectory mode.

3.1.1.2 Non-Coplanar Ascent Trajectory Modes

The other ascent trajectory modes that apply when the target orbit
inclination is greater than the launch site latitude are defined to be non-
coplanar. That is to say, the chaser vehicle is launched either before or

~after the launch site passes through the target orbit plane. As a result,
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the ascent trajectory lies in an assumed space-fixed plane that intersects
the target orbit plane at some angle 8. This angle is known as the plane=
change angle because a plane-change maneuver must be performed to inject the
chaser into the target orbit. There exists four such non-coplanar ascent

trajectory modes. These modes are defined and illustrated in Figures 10 through 13.

Two other ascent trajectory modes apply to target orbits with an
inclination iéss than or equal to the launch sitellatitude} Since the launch
site passes through the target orbit plane only once per day, when iT = A
there exists one optimum launch time that does not require a plane-changev
maneuver {(due east launch). All other launch times require a plane-change
maneuver at the chaser's interception of the target orbit. Plane-change

maneuvers are also required for all ascent trajectories when iT < A

The two ascent trajéctory modes that occur when i < X are applicable

T
to either launch before or after the cc-nodal instant. These two modes; are

defined and illustrated in Figures 14 and 15.

The trigonometric relations pertaining to Ascent Trajectory Modes
1 through 6 are chronologically presented in Appendix B. These equations
relate the plane-change angle (6) and the chaser vehicle's launch azimuth (Az),
for a variable total intercept range angle (91), to any given 1aunch delay

time,(td)n-

3.1.2 ‘Ascent Trajectory Mode Sequencing

A method will be devised for determining which ascent trajectory mode is
applicable for direct ascent to circular orbit rendezvous as a function of the
launch delay time. This method will be referred to as Ascent Trajectory Mode

Sequencing.
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First, consider the case of a target orbit with an orbital inclination
greater than the launch site latitude. Figureilé represents a sphere of target
orbit radius, RZ’ as viewed from the North Pole. All points of interest
on the Earth's surface have been projected radially outward onto the surface
of the sphere. Thus, the Earth's equator appears as the edge of the circle,
while the launch site latitude appears as a smaller concentric circle.
Furthermore, because the target orbit is inclined to the Earth's equator, the

orbit appears as an ellipse.

Point A represents the position of the launch site at the reference
time (td)n = 0, while Point B represents the position of the launch site when
the target orbit plane passes through it in a southerly direction. Points C
and D represent the ascending and descending nodes of the target orbit,

respectively.

The central angle measured, in the equatorial plane, from the meridian

passing through Point A to the meridian passing through Point B is

Y =T - 2 (LHA) (3-1)

and the co-angle § is
E=2m - ¥ (3-2)

Assuming that the target orbit plane is inertially fixed at the reference time

(td)n = 0, the time required for the launch site to rotate through the central

angle, ¢o’ can be written as:

¥
(), =5 (3-3)



LINE OF NODES-—\\\\\\\

N

ASCENT
TRAJECTORY

MODE & -—\\\\\\\\

LAUNCH
SITE AT 4
(t3), =0

e [
ASCENT e
TRAJECTORY
MODE 1 ! :
Qg i }
TARGET @ ‘ }
3 ) h\ A
ORBIT—"" | //,//‘V \
A\ ‘
ASCENT.____/’////
TRAJECTORY
MODE 2

ASCENT
TRAJECTORY
MODE 3

Figure 16. ASCENT TRAJECTORY MODE SEQUENCING WHEN 1

3-13

LAUNCH SITE
LATITUDE

EQUATOR



NORTHROP SraCE LASORATORIES

Also the time required for the launch site to rotate through the central co-~

angle, £, is

(t)_ = £

(3-4)
£ w

e
Cc

Thus, the time required for the launch site to complete one revolution about

the Earth's polar axis (one corrected mean solar day) can be expressed as:

or

(), +(e), =1 (3-5)

o]

If (td)n = 0, and likewise QLS = 0, the launch site is located at the reference
position. 1In this case, the coplanar ascent trajectory mode must be used in
launching the chaser vehicle. However, as (td)n increases, the angle QLS

increases correspondingly. Consequently, Ascent Trajectory Modes 1 through 4

are applicable under the following conditions:

Y
Ascent Trajectory Mode 1, when 0 < QLS :_33
Yo
Ascent Trajectory Mode 2, when 7 < QLS < wo
Coplanar Ascent Trajectory Mode, ' when QLS = wo
Ascent Trajectory Mode 3 when o< < (v +‘E)
? o QLS — Vo 2

Ascent Trajectory Mode 4, when (v +‘£) < < 2w

- o 2 QLS
Coplanar Ascent Trajectory Mode, when Qe = 27 = 0.

P
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It should be kept in mind that the above sequence is valid for one
" corrected revolution of the launch site around the Earth's polar axis, or one
corrected mean sclar day. If the launch window investigation is to be
conducted for several days, the ascent tiajectory mode sequence is repeated

when the angle Qg becomes a multiple of 27.

In a like manner, an ascent trajectory mode sequence can be defined
for a target orbit having an inclination less thap or equal to the laﬁnch-
site latitude. 1In this case the reference time is, by definition, the time
at which the launch-site meridian is midway between the ascending and descending
nodes. Consequently, the plane containing the launch site and the Earth's
spin axis is perpendicular to the line of nodes at the reference time (td)n = 0.
Thus, Ascent Trajectory Modes 5 and 6 are applicéble under the following

conditions:
Ascent Trajectory Mode 5, when 0 < QLS < T
Ascent Trajectory Mode 6, when T < QLS < 2m

Again, it is pointed out that for launch window computations spanning several
days, the sequence must be repeated, for each day, when the angle QLS becomes

a multiple of 27,

The above ascent trajectory modes and the mode sequencing procedures
will also be used for placing the chaser vehicle in an intermediate circular

parking orbit.
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3.1.3 Ascent Trajectories

Regardless of whethgr the chaser vehicle is launched via a coplanar or
a non-coplanar ascent trajectory mode, the ascent trajectory itself is assumed
to lie in a inertially-fixed plane and to be composed of various stages of
flight. These stages, for both the coplanar and non-coplanar trajectories,
are listed in Tables 1 and 2, illustrated in Figures 17, 18, and 19, and

discussed in subsections 3.1.3.1 through 3.1.3.4.

3.1.3.1 Trajectories from Lift-off to Second-Stage Burnout

The ascent trajectory to a parking orbit or target orbit is assumed
to lie in an inertially fixed plane. Thus, it.is proposed that, for a given
mission (launch vehicle and parking or target orbiﬁ), the iterative guidance
mode (IGM) be used to generate a table of the following space-fixed parameters,

at second-stage burnout, as a function of launch azimuth:

1) Velocity, Voo

2) Flight path angle, YZBO

3) Radius, RZBO

4) Range angle, 9,5

5) Flight time, tlZB

6) Mass of the chaser vehicle, LTSS
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Table 1. COPLANAR ASCENT TRAJECTORY

1. Continuous powered flight from lift-off to second-stage

burnout, assuming a three-stage launch vehicle.

2. Coast along a segment of an ellipse, known as a variable coast

ellipse, until the target orbit is achieved.

3. Impulsive velocity increment'applied to change the flight

path angle, to zero.

Y
EC’
4. Burning of the third stage to circularize the orbit and

effect gross rendezvous.



3rd STAGE
IGNITION

TARGET
ORBIT

— G,

S

~ B
S,
3rd STAGE/
SHUTDOWN
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LIFT-OFF
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Figure 17. < COPLANAR ASCENT TRAJECTORY
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Table 2. NON-COPLANAR ASCENT TRAJECTORY

1, Continuous powered flight from lift-off to second-stage burnout,

assuming a three-stage launch vehicle.

2. Coast along a segment of an ellipse, known as a variable coast ellipse,

until the target orbit radius is achieved.

3. Impulsive velocity increment applied to change the flight

path angle, Y

EC, to zero.

4. Execution of an impulsive yaw maneuver, if needed, to alleviate

lead or lag of the target vehicle.
5. Burning of the third stage to circularize the orbit.

6. Circular coasting from third-stage shutdown to interception

of the target orbit.

7. Impulsive velocity increment at interception of the target

orbit to perform a plane~-change maneuver and effect gross

rendezvous.
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This table will be designated the Ascent Trajectory Table and will be generated,
for a given launch vehicle and mission, by assuming the chaser follows a fixed
tilt program from lift-off to first-stage burnout, and a fixed Chi Table from
first-stage burnout to second-stage burnout. First- and second-stage burn times
wiii be fixed. The Ascent Trajectory Table will be placed on tape and used

as an input to the subroutine. It is felt that such a table will considerably

reduce computer run time.

Development of the Ascent Trajectory Table will be performed under a

future extension eof the present work assignment.

3.1.3.2 Variable Coast Ellipse

As Tables 1 and 2 indicate, both the coplanar and non-coplanar ascent
trajectories make use of a variable coast ellipse from second-stage burnout
to third-stage ignition. This coast ellipse is used to increase the total
intercept range angle, 91, and at the same time achieve the target orbit'

radius., It is felt that such a variable coast ellipse will lengthen the direct

ascent launch windows.

Figures 17, 18, and 19 illustrate typical ascent trajectories for a
three-stage chaser launch vehicle. The ascent trajectory is assumed to lie
in an inertially fixed plane passing through the center of the Earth, the
iaunch site, and the position of the chaser at second-stage burnout. This

trajectory may possess any launch azimuth within range safety constraints.

The second-stage burnout parameters, for a given launch azimuth (VZBO'

YZBO’ and RZBO)’ determine the characteristics of the conic the chaser
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Figure 19. ASCENT TRAJECTORY PROFILE
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would follow if it is allowed to coast after second-stage burnout. Because
V2BO is sub-circular, the chaser would follow an ellipse producing atmospheric =
reentry., However, the coast ellipse, following second-stage burnout, can be

altered by increasing Yopo 28 v is held constant. This has the effect of

2BO
producing a family of equal energy ellipses such that the apogee increases as
Y580 is increased. Thus, it can be seen that such a coast ellipse would

aliow the chaser to coast to the desired target orbit radius before the chaser

is inserted into circular orbit.

The unaltered burnout parameters must be checked to determine if they
produce a coast ellipse with an apogee equal to the target orbit radius. The

dimensionless parameter Q is introduced and is defined as

2 2
v R, (V )
= 2B0 , = 2BO" . 2BO (3-6)
v u
co

The eccentricity of the coast ellipse can be written as

7
e :J/l - Q(2-Q) c052%'2BO (3-7)
and the apogee
R
__2B0 «
R, = oy (1O (3-8)

if Ra + R2, the flight path angle,'YZBo, must be changed by an impulsive
velocity increment to produce a new equal energy coast ellipse with an apogee

equal to R,. This is illustrated in Figure 19.

Setting R2 equal to Equation~(3-8), the eccentricity of the new ellipse

becomes

e = (2-Q) -1 (3-9)
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The flight path angle that produced this ellipse is designated as (YZBO)i’

where

%

2
mlaf alze (3-10)

(Yypo)y = cos Q(2-Q)

The impulsive velocity increment required to rotate the velocity vector from

Y to (Y

2BO7 i

(av) =2V, sin ¥ [(Yqun), - Y ] (3-11)
Y2E0 2BO [230 i 2BO

‘Because Ra does equal R,, the chaser could be inserted into circular orbit at
apogee by burning the third stage. However, such an assumption would be very
restrictive because it has the effect of fixing the ascent trajectory. It may
also be that the new coast ellipse is not satisfactory to accomplish gross
rendezvous. In this case, the ascent trajectory profile can be kept more

flexible by holding V constant and increasing (Y2B0)i by the impulsive

2BO

velocity increment
(AV)Yz = ZBZBO sin % [(YZBO)i + (AY)ZBO] (3-12)
BO :
This would produce an equal energy coast ellipse that would intersect the
target orbit in two points ( A and B in Figure 19) for a coplanar ascent
trajectory. However, in the case of a non-coplanar ascent trajectory, the

coast ellipse would intersect a circle of target orbit radius.

The radius of Point A or B is R,. Thus, the true anomaly of Point A on

the coast ellipse can be found by the expression

2

é;n eRZ ” (3-13)

I

S

324
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where

T
e = /1-Q(2-Q) cos? [(7250)1 + AYzBO]

=

280

g = ————

2-Q

The true anomaly of the second-stage burnout point is

2
, i al-e%) tan;£(Y2B0)i +'AY2BO]
2B0 eR

2B0O

Hence, the central angle between the burnout point and Point A is

(Bpeda = 94 - 4po

(3-14)

(3-15)

(3-16)

(3-17)

The flight time required for the chaser to coast along the ellipse from burnout

to Point A is determined from the following equations:

2B0

1
(1-e2)2 sin ¢

sin E =
2BO 1+e cos ¢2BO

Mago = Egpo ~ @ sin Eypg

1
(1-e2)2 sin ?A
A 1+e cos ?A

(3-18)
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If the chaser is allowed to coast to Point B, the required equations are:

¢B:= 27 - QA (3-19)
i
1 (1-=e2)2 sin ¢B
E, = sin
B 1+e cos ¢B
M, = Ep - e sin E, (3-21)

(tgelp = (M - Mypo)

3.1.3.3 Third-Stage Burn Model

An analytical approximation will be used to simulate the burning of
the third stage of the launch vehicle to inject the chaser ‘into circular orbit.
This method is shown in reference 12 to yield highly accurate results for a

third-stage burn problem similar to the one presented herein.

With reference to Figure 20, the approximation can be stated as

follows:

The chaser vehicle follows an elliptical flight path until it arrives
at Point A or B on the coast ellipse. Points A and B have a radius of Rz. The

velocity and flight path angle of the chaser at either of these points are:
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,_/_2._ u -
(VEC)E- R " a (3-22)
B 2

e sin ¢A

and

_ -1
(Ypo),~tan

EC 1+e cos ¢A

=3

- (3-23)
e sin ¢B

. -1
Y )= -
or ( EC% tan Tre cos o

e

At the instant of arrival of the chaser at Point A or B, the velocity vector

is rotated through the angle Y, , by the impulsive velocity increment

EC

(av), = 2(VEC) sin %(Y (3-24)

"EC B EC)%
This causes the subcircular velocity vector to become oriented normal to the
radius vector. At the instant at which the velocity vector becomes perpendicular
to the radius vector the third-stage engine is ignited. The engine is allowed

to burn for a period of time, t,_, until circular orbit velocity,é%oh, is

3B

obtained at Point C.

The circular orbit velocity at the target orbit radius, R2, is

(3-25)

Thus, the velocity increment required to inject the chaser into circular orbit

can be written as

OV)ip = (Veol3 -(VEC)é (3-26)
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It is assumed that the chaser foilows a .straight line flight path from ?oint A

or B to Point C, with .a constant acceleration, during the burn time, t3B'

Thus,
(AV)CIR = atyp (3-27)
where
F
a=—
2B0O
F = thrust of the chaser third stage
m = mass of the chaser third stage at second-
2BO :
stage burnout.
Hence,
(Woip  (V)opp
tBB = o = F/m (3‘28)
2B0O

The chord D connecting Points A and C, or B and C, can be expressed by the

expression

F 2
- L———] t =
D (VEC)%t3B + % szO) 3B (3-29)
Consesequently, the central angle 63B subtended by the chord D can be found
by the expression
et fapl ‘
633 = 2 sin [———ZRZ] | (3-30)

The angle 8p is the central range angle obtained during third-stage burn.
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3.1.3.4 Non-Coplanar ‘Ascent Trajectory Yaw Maneuver

In all non-coplanar ascent trajectory modes the ascent trajectory
plane intersects the target orbit plane at some angle §, known as the plane-
change angle. The intersection of these two planes will be designated as

the orbital plane of nodes.

An impulsive yaw maneuver is assumed to be performed by the chaser
vehicle at third-stage ignition (Point A in Figures 19 and 20) to delete the
targetfs lead or lag. This endows more flexibility to the non-coplanar
ascent trajectory and thus opens up the launch window for a particular ascent

mode.

Figures 21 and 22 illustrate a typical non-coplanar ascent tra-

jectory with yaw maneuvers at third-stage ignition.

The total intercept range angle, 91, is defined to be a variable.
The equations in Appendix A show that as BI is changed at various launch
delay times, the launch azimuth and plane-change angles vary accordingly.
Nevertheless, for a given launch azimuth, Az’ target orbit radius, RZ’ and
coast ellipse, the angle 0y is

e___e g
i o5 Ec)gre + 84 (3-31)

The central angle subtended by the coast arc of the chaser along
a circular orbit of radius Rz;from third-stage shutdown to target orbit

interception is

0.,=6, - [0

cc 1 r 8351 (3-32)

128 T g )ﬁ

N
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The flight time corresponding to BCG can be expressed as

&)

_ Jcc
tcc T W (3-33)
2
where
U .
w2 =/ 3 = angular velocity of a vehicle in a circular orbit of
R
2 radius R2.

Thus,. the total chaser flight time from lift-off to target orbit interception

is

), +¢t (3-34)

(tp), = ty19p T (1 g "t *tee

It has been shown that the position of the target at any value of (td)n’

relative to the ascending ﬁode, can be written as

o = a_ + N(2r) (2-15)
or

)
T

I

y(2m) (2-18)

Thus, the position of the target, from the ascending node of the target

orbit, at the time the chaser intercepts the target orbit, is
0 = ’ -
an - % T (tF)a w, (3-35)

The position of the target from the descending node is

8. = 9 - (3-36)

3-33



NORTHROP SPACE LABORATORIES -

The following equations express, for each ascent trajectory mode, the position
of the target relative to the orbital line of nodes at the time the chaser

intercepts the target orbit:

Ascent Trajectory Mode 1

oy = Opan - Cyr * g (3-37)

Ascent Trajectory Mode 2

Ovoy = Orpy - (Oyr - X) (3-38)

Ascent Trajectory Mode 3

=6 . - -
“rory = *mon ~ Cr o‘VLs) (3-39)

Ascent Trajectory Mode 4

Orory = Oan = Cyr T %) (3-40)
Ascent Trajectory Mode 5

e = 6 - 9 - ) -

TOLN TDN ( NT m/2) (3-41)
Ascent Trajectory Mode 6

Orory = Opan = (B ¥ XI (3-40)
where

.. =1. ] sin A
%g = sin ;E;*I; (3-42)
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sin AT

x = sin (3-43)

sin iT

If .

TOLN is positive, the target is said to lead the chaser when the

chaser arrives at the orbital line of nodes.  If eTOLN is negative, the target
is said to lag the chaser. However, lead and lag can be compensated for by

assuming an impulsive yaw maneuver is performed by the chaser at the point of

third-stage ignition.

The spherical triangles representing both right and left yaw maneuvers
for Ascent Trajectory Mode 1 are shown in Figure 22. However, the following

equations apply to both yaw maneuvers for all ascent trajectory modes:

! -

1
— . a e
eCC cos [cos OroLn €°S (63B + eCC) + sin eTOLN sin ( 3B + eCC) cos 6]

- 633 (3-44)

-1 sin eTOLN siné
U = gin - ; (3-45)

YAW v sin (GBB + eCC)

. 2 +
el sin ¥, sin (BBB eCC)
= gin =in o (3-46)
TOLN

Equation (3-45) has been derived in such a way that Yyaw is positive for a
yaw-right maneuver and negative for a yaw-left maneuver. In either case, the
)

maneuver will be constrained by a subroutine input of (¥ If

YAW MAX®

IwYAWi i-(wYAW)MAX’ the yaw maneuver can be effected to achieve gross rendezvous.

The incremental velocity impulse réquired to accomplish the yaw maneuver

can be written as
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¥
= (vco)3 sin ;ZIAW (3-47)

(AN)YAW

The velocity increment required to perform the plane-change maneuver is

ﬁ-‘-} (3-48)

(AV)PC = (vc0 )3 sin 2

The total chaser flight time from lift-off to gross rendezvous, assuming

a yaw maneuver is performed, can be written as

H
= + -
(tF)a t18 +(tEC%+ tapg T teg (3-49)
where '
R (3-50)
tCC = wz 3=5

3.2 Rendezvous via an Intermediate Circular Parking Orbit

The general problem of achieving gross circular orbit rendezvous via an

intermediate circular parking orbit can be stated briefly as follows:

A non-maneuverable target vehicle isrevolving around the Earth in an
inertially fixed circular orbit of known radius R2 and inclination iT.
The maneuverable chaser vehicle is launched into a circular parking orbit of
radius R1 via the ascent trajectory dictated by the launch delay time,(td)n.
If the ascent trajectory plane is coplanar with the target orbit plane, ﬁhe
chaser is injected into‘the parking orbit when the third-stage engine is

shutdown. However, if the ascent trajectory mode is non-coplanar, the ascent

trajectory and target orbit planes intersect at the orbital line of nodes.
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and are inclined by the plane-change angle 6. In this case, the chaser is
injected into a circular coasting orbit of radius R1 when third-stage shutdown
occurs. The chaser coasts in this coasting orbit until it arrives at the

orbital line of nodes.

Upon arrival at the orbital line of nodes, the chaser has two options.

These options are:

1) Continue coasting in a parking orbit that lies in the ascent
trajectory plane. This parking orbit is non-coplanar with the target
orbit since the planes containing these two orbits are inclined

by the angle d.

2) Perform an impulsive plane change maneuver dictated by the magnitude
of § and continue coasting in a parking orbit that is coplanar with

the target orbit.

Regardless of the parking orbit used, the chaser is allowed to coast in
the parking orbit until the phase angle between the chaser and the target is
of the correct magnitude to effect a pre-determined two~- or three-impulse
transfer maneuver. Gross rendezvous is assumed to be accomplished when the
chaser and the target achieve the same position, velocity, and flightepath

angle in inertial space.

Figure 23 illustrates coplanar and non-coplanar parking orbits.
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Figure 23. THE PROBLEM OF CIRCULAR ORBIT RENDEZVOUS VIA AN
INTERMEDIATE CIRCULAR PARKING ORBIT
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3.2.1 Orbital Transfer Maneuvers

Several types of two- and threejimpulse maneuvers will be considered
for transferring the chaser vehicle from a circular coplanar or non-coplanar
parking orbit to a circular target orbit. These maneuvers can be classified
as elliptical and parabolic transfer modes. Hyperbolic transfers were not

considered due to the extremely high velocity increment required.

3.2.1.1 Transfer from a Coplanar Parking Orbit to the Target Orbit

Allyorbital transfer modes considered can be initiated at any point
in the parking orbit. The transfer conic lies entirely in the plane of the
parking orbit. Gross rendezvous is assumed to be accomplished upon completion

of the orbital transfer maneuver.

Briefly, the coplanar transfer modes used in this analysis are as

follows:



a) Hohmann Transfer Mode - The chaser is given a tangential velocity impulse,
AVi, at point a such that the target orbit is
intercepted tangentially at point €. A second
velocity impulse, AVy, is applied at point c to
circularize the chaser's orbit, (Figure 24).

REFERENCE AXIS AND
MAJOR AXIS OF
THE TRANSFER ELLIPSE TARGET ORBIT

COPLANAR
PARKING
ORBIT

- ZXVZ

Figure 24, HOHMANN TRANSFER MODE
3-41



b) Modified Hohmann Transfer Mode - A tangential velocity impulse is applied

TARGET
ORBIT

”RENDEZVEE/V )
AT An

to the chaser at point a such that the
transfer ellipse intersects the target
orbit non-tangentially at points A and B.
A second velocity impulse, AVy, is applied
at either point A or B to circularize the
chaser's orbit (Figure 25).

REFERENCE AXIS AND
MAJOR AXIS OF
THE TRANSFER ELLIPSE

COPLANAR
PARKING
ORBIT

Av,

7

i
// "RENDEZVOUS

AT B"

Figure 25. MODIFIED HOHMANN TRANSFER MODE
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c¢) Gamma-Change Transfer Mode - A non-tangential velocity impulse, AVy, is
applied to the chaser at point a. The resulting
transfer ellipse intersects the target orbit
non-tangentially at points A and B. A second
velocity impulse, AVy, is applied at either
point A or point B to circularize the chaser's
orbit (Figure 26).

REFERENCE
AXIS MAJOR AXIS OF
HYRENDEZVOUS THE TRANSFER
AT At ELLIPSE

' TARGET
\ ~ ORBIT

"/
/
/
"RENDEZVOUS

AT B"

Figure 26. GAMMA-CHANGE TRANSFER MODE
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d) Parabolic Transfer Mode - A non-tangential velocity impulse, AVy, is applied
to the chaser at point a such that the resulting
transfer conic is a parabola. This parabola inter-
sects the target orbit at point A. A second velocity

impul se, AVy, is applied at point A to circularize
the chaser's orbit (Figure 27),.

REFERENCE

AXIS MAJOR AXIS OF
"RENDE ZVOUS THE TRANSFER
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PARKING
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TARGET
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Figure 27. PARABOLIC TRANSFER MODE
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e) Concentric Three-Impulse Elliptic Transfer Mode - A tangential velocity impulse,
AVys is applied to the chaser at point a such
that the chaser follows a Hohmann ellipse to
point c¢. The second velocity impulse, AVa,
is applied tangentially at point ¢, causing
the chaser to follow a second intermediate
transfer ellipse and return to point c. The
third velocity impulse, AV3, is applied at
point ¢ to circularize the chaser's orbit
(Figure 28).

REFERENCE AXIS AND
MAJOR AXIS OF THE
TRANSFER ELLIPSES

— K, ~ TRANSFER
TARGET s TRP ~ ELLIPSE 2
ORBIT /7 Avy a \\
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. R, |
\ /
/
\ \\ ,
\ /
N\ Y
N = P
- > -
AV2 AV 3

Figure 28. CONCENTRIC THREE-IMPULSE ELLIPTIC TRANSFER MODE
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f) Bi-Ellipt1c Three Impulse Transfer Mode - This transfer is an application of

TARGET
ORBIT

TRANSFER
ELLIPSE 1

Figure 29.

either the Modified Hohmann of the

Gamma ~Change’ Transfer Modes. Either

a tangential or non-tangential velocity
impulse,[xv s 1s applied to the chaser
at point a. This causes the resulting
transfer ellipse to intersect the target
orbit at point A. The chaser is allowed
to coast on Transfer Ellipse 1 until

it arrives at the apogee, point c. A
second velocity impulse, AVj, is

applied tangentially at point ¢, causing
the chaser to follow Transfer Ellipse 2
to point d. The third velocity impulse,
AV3, is applied tangentially at point d
to circularize the chaser's orbit
(Figure 29),.
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3.2.1.2 Transfer from a Non-Coplanar Parking Orbit to the Target Orbit

The non-coplanar parking orbit plane intersects the target orbit plane at
the so-called orbital line of nodes. These two planes are inclined by the plane-

change angle 6 .

The previously discussed coplanar orbital transfer modes can be used for
non-coplanar transfer it if is assumed that the orbital transfer conic lies in-
part in the plane of the parking orbit. Thus, the transfer conic intersects
not the target orbit, but an orbit of radius R2 lying in the parking-orbit

plane. This orbit is known as the "fictitious" target orbit, (Figure 30).

It has been stated above that an orbital transfer maneuver can be initiated
at any point in the parking orbit. 1If the points of transfer conic depafture
and arrival on the "fictitious"” target orbit (points a and A, respectively,
in Figure 30a) lie on the same side of the orbital line of nodes, the chaser is
allowed to follow the transfer conic until it intersects the "fictitious" target
orbit. The chaser tﬁen undergoes a change in flight-path angle and coasts along
the "fictitious™ target orbit until it arrives at the nearest node. An instantaneous
plane-change maneuver is then performed and gross rendezvous is said to be
accomplished. However, if point a and the point of arrival on the "fictitious"
target orbit (point B in Figure 30b) lie on opposite sides of the orbital line
of nodes, the chaser is allowed to follow the orbital transfer conic until the
conic intersects the orbital line of nodes. At this point in time the chaser
performs an instantaneous plane-change maneuver enabling the chaser to follow
a portion of the transfer conic lying in the tﬁrget orbit plane. Gross rendezvous
is accomplished upon completion of the orbital transfer maneuver at point B!

in Figure 30b.
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3.2.2 Orbital Transfer Mode Matrix

The parameters that are of primary interest for any orbital transfer

maneuver are:

(AV)TRANS ~ Total impulsive velocity increment required to perform

the transfer maneuver
(tF)TRANS - Total flight time required to perform the transfer maneuver
¢TRANS - The phase angle or the angle between the chaser and the

target at the time of initiation of the transfer manéuver.

These parameters can be generated for a large number of coplanar orbital

transfer maneuvers by what will be called the Orbital Transfer Mode Matrix.

It was found during the early development of the equations for the
various modes of coplanar and non-coplanar transfer that all two-impulse
transfers were a special case of the more general coplanar Gamma-Change
Transfer Mode. Both the coplanar and non-coplanar three-impulse transfers
were also found to be special applications of the two-impulse modes. All
non-coplanar transfer modes differed from the coplanar transfer modes by the
added maneuvers outlined in Section 3.2.1.2. Thus, it was found that all of
the above mentioned orbitgl parameters can be.generated for a large number of
:ransfer maneuvers by solving the system of equations for the coplﬁnar Gamma-
Change Transfer Mode as certain "key" parametérs in the geometry of this mode
are varied. Additional equations are, however, required for all coplanar
three~-impulse transfer modes. This method of solution gives rise to the so-

called Orbital Transfer Mode Matrix.
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The Orbital Transfer Mode Matrix is an orderly array of the transfer
parameters generated for any one, any combination, or all of the coplanar
transfer modes pre-selected by the user of the subroutine. An example is in
order. Assume the user of the subroutine wishes to generate data for the
coplanar Gamma-Change Transfer Mode with "rendezvous at A and B'". Knowing
the parking orbit radius, Rl’ andvthe target orbit radius, R2, the general
set of qrbital transfer equations (and the additional equations for 'rendezvous
at B") are solved as the "key" parameters 61 and n (to be discussed later)
are varied within certain limits. This produces an array of the orbital
transfer parameters for all of the transfer modés so generated. The array or

matrix is stored on tape and used as an input to the subroutine.

To set ﬁp the equations for the coplanar Gamma-Change Transfer Mode,
the geometry related in Figure 31 will be used. Point a is defined as the
point of orbital transfer departure. This point lies on the reference axis.
The angle 91 defines the position of the major axis of the transfer conic
relative to the reference axis. The angle n defines the location of the
transfer conic's intersection with the target orbit (Point A) relative to the
point of transfer departure.

Thé angle 6 will be defined to have any value such that

0 <01 <21T.

However, for any orientation of the major axis of the transfer conic (61),

there is one and only one parabola that has this major axis orientation and

passes through‘point a. This parabola will be designated the "Limiting Parabola.
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The "Limiting Parabola" defines a family of concentric transfer ellipses that
have the same major axis and pass through point a. Figure 32 illustrates this

vital point.

For given values of parking orbit radius, Rl’ and target orbit radius, R2,
the "Limiting Parabola" (illustrated in Figure 33) for any value ofe1 can be

determined as follows:

The angle ®, is the true anomaly of the departure point (a). Because

1

e = 1 for a parabola, the semi-latus rectum of the limiting parabola can be

expressed as

(P)LP = Ry (1 + cos 91> . (3-51)

or

(P)

- R2 (1 +.cos 62) (3-52)

where

92 = true anomaly of the point of intersection of the "Limiting Parabola"

with an orbit of radius RZ'

Equating expressions (3-51) and (3-52) the angle 6, is

R

-1 1
. —— ) - -
02 cos R, (1 + cos 1) 1 (3-53)

The family of the transfer conics, definedAby the limiting parabola, intersects

an orbit of radius R2 in an infinite number of points. The range of intersections is

0, = 6 <(am - eé,_
where

6 = true anomaly of the point of intersection of the transfer conic with

the target orbit.
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Consider Eigure 34, which illustrates the "Limiting Parabola" superimposed
upon the Gamma-Change Transfer Mode geometry. In most cases the transfer
conic intersects the target orbit in two points, A and B. When 0 = 93,
the intersection is point A and when 0 = 94, the intersection is point B.
This is known as "rendezvous at A" and '"rendezvous at B", respectively.

Parabolic transfer modes are applicable when 0 = 92-

However, for every transfer intersection at point A, when

(6, - 8;) < n < (m-8),

2

there is an associated point of intersection B. Thus, to reduce computation
time, the general equations for the coplanar Gamma-Change Transfer Mode are
set up in terms of the point of intersection A, or "rendezvous at A'. An

additional set of equations is provided for "rendezvous at B".

The general set of equations for the coplanar Gamma-Change Transfer

Mode for "rendezvous at A", with reference to Figure 31, are as follows:

The point at which the "Limiting Parabola" intersects the target orbit,

of radius R,, is determined by equation (3-53).

From this equation the range of acceptable values of 83 is found to

be

8, < 64 < (x - 92) (3-54)
where
63 = 0



REFERENCE
AXIS

MAJOR AXIS OF
THE TRANSFER
ELLIPSE

"LIMITING PARABOLAY

COPLANAR
PARKING
ORBIT

"RENDEZVOUS

e ‘;

~ ’ -
~ -7 3 N~ "RENDEZVOUS

—— —

b I T

AT BY

Figure 34, #LIMITING PARABOLA" AND THE GAMMA - CHANGE
TRANSFER MODE GEOMETRY

d=27



NORTHROP sSPACE LABORATORIES

Since the angle n has been defined as a "key" parameter, it is advantageous

to express the range of acceptable n's as

(6, - 6;) =<nz<(m-8) (3-56)

The eccentricity, e, of the orbital transfer conic can be written in terms of

61 and 63 as

]
!

= R, (1 + e cos 91)

P=R2 (1 + e cos 93)

R, (1 + e cos 61)=R2 (1 + e cos 63)

e(R1 cos 6 - R2 cos 83) = RZ - Rl'

Thus,
R, - R
2 1
e = - (3-57)
Rl cos 61 - R2 cos 63

Knowing e, the semi-latus rectum can be determined
P =R, (1 + e cos 91) (3-58)

As well as the semi-major axis

a=—E— (3-59)
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The above equations determine the geometric parameters of the transfer conic.

However, the following equations are the expressions required for "rendezvous

at AHg

The eccentric anomaly of the point of transfer departure (point a),

measured from the major axis of the transfer conic, is:

L
(1 - e2)? gin ©

1

sin E1 =

or

1+ e cos 8y

1

1

- ez)é sin g,

1 + e cos 01

The eccentric anomaly of point "A" is

1
a - ez)2 sin 9

3

sin E3 =

or

E, = sin

1 + e cos 93

i
(1-e2)2 sin 9

3

1 4+ e cos o

The mean anomalies of peints a and A are

M1 = E1 = e sin E1

and

My = Eq

The flight time of a vehicle

conic to point a is

= e sin E

3

3

(3-60a)

(3-60b)

(3-61a)

(3-61b)

(3-62)

(3-63)

traveling from the perigee of the transfer

'I:'}ﬂ)
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The flight time of a wvehicle travelling from the perigee of the transfer

conic to point A isg

Thus, the total transfer flight from point a to point A is

)

1

3
= - My ] 8 -
TRANS — (M3 M. ) 0 (3-64)

{
.tF

Now a relationship is needed to express the phase angle, ¢ g? required to

TRAN

accomplish gross rendezvous.

During the time, (tF)TRANS’ the chaser vehicle travels from point a
to point A along the transfer conic; through a central angle of n. Also
during this time the target vehicle travels from point b to point A along

the target orbit, of radius RZ; an angle of Q.

Thus,
= Q -
M= drrans (3-69)
Q= 3-
but Yy (tp)rpans (3-66)
where
w2A= angular velocity of the target
L (3-67)
%9 23 o
2
Hence,
n = ¢TRANS + w, (tF)TRANS'
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Solving for the phase angle ¢TRANS

) =n - o, (

TRANS 2 )

t o) TRANS (3-68)

It is now of importance to examine the total velocity increment required,

(av) »to accomplish gross rendezvous.

TRANS

The flight path angle at point a,(Yl),measured from the local horizontal

and expressed in terms of the true anomaly of point a, is:

e sinel ‘
tanYl = IT(;—_CF;éI {3«69a)
or I
e sin ©
Y =1 1 )
vy = {tan e cos (3-69b)

The circular orbit velocity of the chaser vehicle in the parking orbit is

(v

1) .
L= ® (3=70)

as

(3=71)

Thus, the impulsive velocity increment required for the chaser vehicle to

leave the parking orbit at point a and travel along the transfer conic is
AV, = (v )2‘+ (v )2 . 2{v ), (vo.n), cOS Y E (3-72)
1 e’l co’g e’l '7CO7] 1 :

The flight path angle at point A,(Y3), measured from the local horizontal, is
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e sin 63
tan Y3 = T 4 cos 64 (3-732)
or
-1 e sin 93 |
Y3 ='ltan 1+ e cos 63 (3-73b)
The circular orbit velocity of a vehicle in an orbit of radius R2 is
(3-74)

and the velocity of the chaser vehicle at point A on the transfer ellipse

is

(3-75)

Hence,; the impulsive velocity increment required for the chaser wvehicle to
leave the transfer conic at point A and travel along the target orbit can be

written as

N P 2 . 5 i
AV2 = Bwe)B +‘(vco)3 2(ve)3 (vco)3 cos Y3] (3-76)
Therefore, the total impulsive velocity increment required to accomplish the

orbital transfer maneuver is

(M) = AV, + AV

) IRANS 1 (3-77)

2

Reference is made to Appendix C for the values of 91 and N that dictate
which coplanar orbital transfer mode is applicable as the range of n!s is

examined. The appendix also presents the additional equations required for

1) Coplanar "rendezvous at B"
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2} Coplanar Concentric Three-Impulse Elliptic Transfer Mode
"3) Coplanar Bi-Elliptic Three-Impulse Transfer Mode.

Figure 35 presents a semi-detailed logic flow chart for the Orbital
Transfer Mode Matrix., The matrix is generated for any one, any combination,

or all of the coplanar orbital transfer modes by inputting R, and R2 and the

1
following control parameters:
A=1 Coplanar "rendezvous at A!" and/or "rendezvous at B!
A =2 Coplanar "rendezvous at A" and/or "rendezvous at B" and

Coplanar Concentric and/or Bi-Elliptic Three-Impulse Transfer

Mode({s)
A =3 Coplanar Concentric and/or Bi-Elliptic Three-Impulse Transfer
Mode(s)
B=1 Coplanar 'rendezvous at AU
B =2 Coplanar "rendezvous at A" and/or "rendezvous at B"
B=3 Coplanar '"rendezvous at B"
c=1 Coplanar "rendezvous at A!
c=3 Coplanar "rendezvous at A and B"
D=1 Yes = - - Coplanar Three-~-Impulse Transfer Modes
D=2 No = =~ « Coplanar Three-Impulse Transfer Modes
E=1 Yes = = - Coplanar Concentric Three-Impulse Elliptic'Transfer
Mode
E=2 No = -~ Coplanar Concentric Three-Impulse Elliptic Transfer
Mode

F=1 Yes - - - Coplamar Bi-Elliptic Three-Impulse Transfer Mode

F = 2 No - - - Coplanar Bi-Elliptic Three-Impulse Transfer Mode.
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Figure 35 indicates that the orbital transfer parameters for all
generated coplanar transfer modes are arranged by decre351ng order of the

transfer phase angle, ¢ This matrix or array of transfer parameters is

TRANS *

stored and used as an input to the subroutine.

3.2.3 Orbital Transfer Maneuvers and Phasing Relationships

A parking orbit, whether it is coplanar or non-coplanar with the
target orbit, is utilized by the chaser for waiting until the phasing‘relation»
ship between the chaser and the target is correct to initiate an orbital

transfer maneuver.

If the launch delay time,(td)n, is such that the Coplanar Ascent
Trajectory hbde is applicable, the chaser is injected into a coplanar parking
orbit. This is illustrated in Figure 36. The true phase angle Between the
chaser and the target at the time of chaser orbital injection is determined

as follows:

a g = sin”! :ﬁ—%}' | (3-42)
Orany = % t (t:FZi @, (3-35)

If [ogg * 8yop T (eEC) + 0, ] < eTAN'
breue = Pray ~l%s * Oop * (Bgedy + 53131 o, SeED
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+ (e..), *8

1f lagg *+ 6 EC’A 3p]

LS 12B TAN

brpup = 2" ={0pay = loggt 8105 * (gl + 0,51} (3-79)

Once the true phase angle is known, the Orbital Transfer Mode Matrix
is searched for a ¢TRANS that is equal to $rRUE " If a suitable transfer
phase angle is found, the orbital transfer mode associated with S TRANS can

be initiated. However, if a transfer phase angle cannot be found such that

Srrans = PrRUE?

the chaser must remain in the parking orbit until the phasing relationship is
suitable for initiation of a transfer maneuver. The next transfer phase angle
_in the descending sequence of phase angles is then examined to determine the

required parking time. This parking time is determined by

_ YrruE "~ %7RANS

EPARK ; for 0 < bppup 2 *rpans
or (3-80)
. _ (27 - brpans’ = Pmmue
PARK ) -
¢
for 0 < drpyp < ®TRANS
where
$ = chaser catch-up rate
- l%. (3-82)
1
&
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Thus, the Orbital Transfer Mode Matrix»is searched for an orbital transfer
mode that can be accomplished within certain parking time restrictions. An
acceptable transfer maneuver is, however, restricted by the allowable total
mission velocity increment and total mission flight time. The semi-detailed

subroutine logic flow chart in Section 4 illustrates this approach.

If the launch delay time, (td)n’ is such that a Non-Coplanar Ascent
Trajectory Mode is applicable, the chaser coasts from ;hird=stage shutdown
to the orbital line of nodes. When the chaser arrives at the orbital line of
nodes, the chaser can perform either of the two options outlined in Section 3.2.
If a plane change is performed and a coplanar parking orbit utilized, the
procedure for finding an acceptable transfer mode is the same as above.
However, the use of a non-coplanar parking orbit requires a somewhat different

approach.

Ascent into a non-coplanar parking orbit is accomplished by a non-
coplanar ascent trajectory similar to the one used for direct ascent to
rendezvous. Figure 37 illustrates this point. The true phase angle existing

when the chaser arrives at the orbital line of nodes, for any ascent trajectory

mode, is found by

e = roLy (3-83)
or

brue = 27 - Ororn (3-84)
where

OroLy 1S determined by equations (3-37) through (3-40).

3-69



3RD STAGE
SHUTDOWN

CIRCULAR

COAST ARC ORBIT LINE

OF NODES

COPLANAR PARKING .
3ol ——~"> .

TARGET ORBIT

7~ ‘§§;é”€?s‘

3RD STAGE
IGNITION

VARIABLE COAST
ELLIPSE

\\——ZND STAGE BURNOUT

1ST STAGE BURNOUT

LAUNCH SITE AT
LAUNCH DELAY
TIME

NON-COPLANAR
PARKING ORBIT

INERTIALLY FIXED ASCENT
TRAJECTORY & NON-COPLANAR
PARKING ORBIT PLANE

[\
kY

—INERTIALLY FIXED TARGET TARGET ——
ORBIT PLANE AND COPLANAR ORBIT
PARKING ORBIT PLANE INTERCEPTION

ASCENDING

NODE

Figure 37. TYPICAL NON-COPLANAR ASCENT AND NON-COPLANAR PARKING ORBIT

3-70

5



NORTHROP SPACE LABORATORIES

When ¢TRUE is found, the Orbital Transfer Mode Matrix is searched for
a transfer phase angle, éTRANS’ that is equal to or slightly less than $rRUE *
The time that must be spent in the non-coplanar parking orbit is found by

equation (3-80).

It must be remembered that the parking orbit is non-coplanar with the
target orbit and that these planes intersect at the orbital line of nodes
(Figure 30b). Thus, the position of the chaser at the end of required parking

time, relative to the orbital line of nodes, must be determined.

Figure 38 illustrates the Non-Ceplanar Gamma-Change Transfer Mode .
geometry as viewed from vertically above the parking orbit plane. The position

of the chaser from the orbital line of nodes for any parking time is

w, (t ) (3-85)

%oy = “1 ‘tpark

If gross rendezvous is desired at point e in Figure 38, the chaser
would follow the transfer conic from point a to point A on the "fictitious"
target orbit. The chaser would then coast in the "fictitious' target orbit
until it arrives at the nearest orbital node. At the node, the chaser would

perform a plane-change maneuver and effect rendezvous.

Appendix D contains the additional equations required for non-coplanar
orbital transfers if the point of departure and the point of arrival, on the
"fictitious" target orbit, both lie on the same side of the orbital line of

nodes.

However, if gross rendezvous is desired at point B' in Figure 30b,

the chaser would be allowed to follow the transfer conic from point a to
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the orbital line of nodes (point f in Figure 38). The radius at point £ on

the orbital transfer conic is

P .
R = (3-86)
COLN 1+ e cos (7 - 8 coLN + el)
The chaseris velocity is
2 N
(V) = f&=& U (3-87)
COLN RCOLN a

Thus, the impulsive velocity increment required to perform the plane-change

" maneuver is

(AV)PC = 2(V) sin ¥ 6 (3-88

COLN

After performing the plane change, the chaser continues coasting along the
transfer conic, lying in the target orbit plane, until it arrives at Point B'.

Gross rendezvous is effected at this point.
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SECTION 4

RESULTS AND CONCLUSIONS

4,1 Subroutine logic Flow Chart

Figure 39 presents a semi-detailed logic flow chart for the entire sub-

routine.

It is suggested that the Ascent Trajectory Table and the Orbital

Transfer Mode Matrix be input tapes. The subroutine has the following inputs:

a)

b)

c)

d)

e)

£)

g)

h)

i)

i)

Target orbit radius, R2
Target orbit inclination, i

T

Position of the target from the ascending node at the reference

time, a,
Launch site latitude, A
Launch site longitude, ),

Local hour angle of the vernal equinox, measured from the launch site

hour circle at the reference time, LHAY

Tot i
otal allowable parking orbit time, (FRARK) MAX

Chaser launch azimuth range safety constraints, (AZ%ﬂU( and (AZ%MIN
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k) Desired parking orbit radius, R1
1) Maximum allowable yaw angle, (¥

YAW) MAX

m) Maximum aliowable chaser 2nd-stage burnout flight path angle,
“Yomodmx

. -3

n) Earth oblateness constant, J = 1.62345 x 10

o) Earth equatorial radius, R, = 6.378156 x 10°m

p) Earth gravitational constant, W = 3.986016 x 1014m3/sec2

q) Acceleration due to gravity at the Earth's surface,

g, = 9.8045016 m/sec2
r) Length of the true mean solar day, To = 86,164,099 sec
s) True Earth rotational rate, wp = 7.29211513 x 10'5 rad/sec
t) Reference time in terms of GMT or ZULU time
u) Number of days of required launch window investigation, M
v) Chaser vehicle third-stage thrust, F

w) Maximum aliowable chaser ascent impulsive velocity increment,
C AV
[< )al«mx

X3 Llaunch delay time increment, Atd

y) Chaser 2nd-stage burnout flight path angle increment, AYZBO

42
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4,2 Recommendations

It has been assumed that the maximﬁm allowable parking orbit time is
relatively small, roughly on the order of one parking orbit revolution. Thus,
in a first approximation, it is assumed that fhé differential nodal regression
of the target and parking orbits is négiigible. However, for longer parking
times, equation(s) must be added to the subroutine to account for this unequal

nodal regression.

It is recommended that the subroutine be programmed and checked out in

the following steps:

1) Programming and checkout of various separate phases or parts of the
subroutine. This will ensure the speed and accuracy of each independent

phase.
2) Error analysis and improvement of each phase.

3) Programming and checkout of the entire subroutine to check the

compatibility of all separate phases.

4-5



NORTHROP SPACE LABORATORIES

SECTION 5

REFERENCES

1. Berman, Arthur I., The Physical Principles of Astronautics, John Wiley &
Sons, Inc., 1963.

2. Bird, John D., and Thomas, Jr., David F., YA Two-Impulse Plan for Performing
Rendezwus en a Once-a-Day Basis,” NASA TN-D-437, Langley Research Center,
November 1960.

3. Blitzer, Leon, "On the Motion of a Satellite in the Gravitational Field
of the Oblate Earth,” GM-TM-0165-00279, Space Technology Laboratories,
September 1958.

4, Brunk, William E., and Flaherty, Richard J., "Methods and Velocity Requirements
for the Rendezvous of Satellites in Circumplanetary Orbits," NASA-TN-D-81,
Lewis Research Center, October 1959.

5. Coates, G. L., "Optimization of Two-Burn Direct Ascent Trajectories for
Rendezvous," TDR-269 (4550-20)~5, Aerospace Corp., February 1965.

6. Davis, H. A., and Chambers, L. H., Brief Course in Plane and Spherical
Trigonometry, American Book Co., 1933.

7. Dowlen, E. M., and Seddon, J., "Orbital Rendezvous Techniques", Journal
of the British Interplanetary Society, Vol. 19, 1963-64.

8. Ellison, Bobby, "A Parameter Study of Launch Windows for Orbit to Orbit
Transfers About a Planet Keeping Required Energy Change Near a
Minimum?®, Aeroballistics Internal Note No. 30-63, George C. Marshall
Space Flight Center, Huntsville, Alabama, 1963.

9. Ehricke, Krafft A., Space Flight, Vol II Dynamics, D. Van Norstrand Co.,
Inc., 1962.

10. Kenehan, Martin F., "Analytic Determination of Launch Windows for Orbital
Rendezvous, ! ATIAA Paper No. 64-399, Paper Presented at 1lst AIAA Annual
Meeting, Washington, D.C., June 29 - July 2, 1964,

11. Koelle, Heinz H., ed., Handbook of Astronautical Engineering, McGraw-Hill
Book Co., 1961.

12, Metzger, R. R., Kopp, R. J., and Rhodes, P., "Fortran IV Computer Program
for the Determination of the Applicability of IGM to Coplanar Earth
Orbital Rendezvous,!" Northrop Space Laboratories, Huntsville, Alabama,
(to be published).

5-1



NORTHROP SPACE LABORATORIES

13.

14.

15.

160

17.

18.

Nelson, Walter C., and Loft, Ernest E., Space Mechanics, Prentice-Hall,
Inc., 1962.

Neilsen, Kaj J., and Vanlonkhuyzen, John H., Plane and Spherical Trigonometry,
Barnes & Noble, 1964,

» Orbital Flight Handbook, Martin-Marietta, Space Systems Division.

Petersen, Norman V,, and Swanson, Robert S., "Rendezvous Compatible
Orbits, Astronautical Sciences Review, Oct. - Dec. 1959,

» Space Navigation Handbook, Navpers 92988,

Swanson, Robert S., and Petersen, Norman J., "Summary Report of Rendezvous
Compatible Orbits,;’ NSL 62-117, Northrop Space laboratories, Hawthorne,
California, July 1962,



NORTHROP SPACE LABORATORIES

APPENDIX A

DEFINITIONS

The reader is referred to Figures A-1 and A-2 with reference to the

following definitions:

Celestial sphere - The celestial sphere is an imaginary sphere of infinite
radius, with the Earth located at its center. All celestial bodies,
including the First Point of Aries, are considered to lie on the surface
of the celestial sphere. The Earth's equatorial plane is coplanar with the
celestial sphere's equatorial plane and the Earth and celestial polar axes
coincide. The celestial sphere remains fixed in inertial space while the

Earth rotates about its axis.

Hour circle - The hour circle is the great circle that passes through the

celestial poles and a point on the celestial sphere.

Vernal equinox - The vernal equinox is the intersection (ascending node) of
the Earth'’s equatorial plane. This line points to the assumed space-fixed

First Point of Aries, designated by the symbol Y.

Sidereal hour angle (SHA) - The sidereal hour angle is the central angle,
measured in the equatorial plane, between the hour circle of a point on
the celestial sphere and the hour circle of Aries. This angle is

measured westward from Aries through 360°,

A-1



NORTHROP SPACE LABORATORIES

Local hour angle of Aries (LHAY) - The local hour angle of Aries is the central
angle between the hour circle of the launch site and the hour circle of
Aries. This angle is measured weétward from the launch site hour circle

through 360°.

Greenwich hour angle of Aries (GHAY) - The Greenwich hour angle of Aries is the
central angle between the hour circle of the Earth's prime meridian and
the hour of circle of Aries. This angle is measured westward from the

Greenwich hour circle through 360°.

Local hour angle (LHA) - The local hour angle is the central angle between the
hour circle of the launch site and the hour circle of the target orbit
ascending node. This angle is measured westward from the launch site

hour angle.
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APPENDIX B

TRIGONOMETRIC EQUATIONS FOR THE ASCENT TRAJECTORY MODES

This appendix presents the geometrical relationships for each ascent
trajectory mode and the associated equations. These equations were developed
= 90

assuming that the total intercept range angle BI was a Variable? (for 8

I

degrees, minimum plane-change angle occurs). Furthermore, each ascent trajectory
mode is restricted by range safety constraints placed on the launch azimuth,

AZ, and by the launch vghicle's capabilities to perform plane-change maneuvers.
AThus, depending on thesé restrictions, the launch times for a given mission

can be determined by examining all acceptable values of GI for the various

ascent geometry cases, at each time point,'(td)n, after (td)n = 0, for a

given period of time.

With reference to Figure B-1, the following equations are required for
determining the launch azimu;h for the Coplanar Ascent Trajectory Mode:

rcos iT

or

sin”
Z

s % (B-1)

-

cos 1
T

TR (8-2)

With reference to Figure B-2, the equations applicable to Ascent Trajectory

Mode 1 are as follows:

The central angle measured along the equator from the ascending node of

the target orbit to the launch site meridian can be written as:

LHA

, =1
= sin

B-1

taﬁ A
tan i

(2-7)
T



Figure B-1. COPLANAR ASCENT TRAJECTORY MODE GEOMETRY
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During a launch delay time of (td)n, the Earth rotates through the angle’

QLS’ where

2 = ~10)
LS ugc (td)n (2-10)

The angle QLS is the central angle measured from the launch site meridian at

(td)n = 0 to the launch site meridian at time (td)n.

The latitude of the target orbit ground track when it intersects the launch

site meridian at time (td)n is

tan A, = sin (¢ - QLS)tan i (3-3)

where
6=y -+ LHA (B-4)
v, = T - 2(LHA) (3-1)

The angle'wo is the central angle measured from the launch site meridian at
time (td)n = 0 to the meridian passing through point B. Point B represents
the point at which the target orbit ground track passes through the launch-

site in a southerly direction. For Ascent Trajectory Mode 1, AT > 0.

The angle SI is determined by the equation

— ) - Q - . -
cos BT cos(0 LS) sin i, (B-5)

0 <8

< WMo

T

The plane-change angle, §, can be computed from

T

sin GI

sin(A,. - A) sin BT

sing = (B-6)

B-4
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The central angle, measured in the target orbit plane, from the launch
site meridian at (td)n = (0 to the launch site meridian at (td)n is eT, and is

determined by the equation

cos ST = gin }T sin) + cosl,r cos X cos QLS (B-7)
0 < eT <. 7wf2.
The angle GN is the central angle measured in the target orbit plane from

the intersection of the target orbit ground track and the launch site
meridian at (td)n to the intersection of the ascent trajectory plane and the‘
target orbit plane (orbital line of nodes). This angle can be found by the
equation

cos %(BT + §)
tan%N=tan% {eI+ (AT -2 ] Lcos P ) (B~8)
T ‘

The launch azimuth, Az, is determined by:

cos % [61+(AT - )1
cos % [91,- (AT-A)]

cot %AZ =.tan %(BT + 8) (359)

With reference to Figure B-3, the equations applicable to Ascent Trajectory

Mode 2 are:

LHA = sin"! -"-f_—:g—;‘— (2-%)
T
Qg = w,(ty) . ' ' (2-10)
wo =T- 2(LHA) . (3-1) |
0 = wo + LHA | (B-4)

B-5
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{l

tan AT sin (0 - QLS) tan i, (B-3)

S -0 (B-5
cos B = cos (0~ & ) sin i, (B-5)
sin( A - A)sin BT
sin § = (B-6)
sin 0 ,
I
cos GT = gin AT sinA + cos AT cos AcosSZLS (B-Z)
, cos%(BT + 8) _
tank GN = tank [61 + ()\T - A)] cos%(BT ) (B-8)
cosk {91 + ( AT - Ml
cot%Az = tank( BT + &) (B=-9)

cosk 16, - ( Ay - M)

With reference to Figure B~4, the equations applicable to Ascent Trajectory

Mode 3 are:

- -1 | tan A
LHA = sin Tan 1 (2-7)
g
QLS = we(td)n (2-10)
o= - 2(LHA) (3-1).
g ='QLS z wo .(B-lo)
tan AT = sin(LHA -’p)tan 1T (B-11)
cos BT = cos(LHA - p)sin iT (B-12)
~ sin( Ay - 1) sinB,
Ks.inﬁ = sinel {(B-6)
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Figure B-4. ASCENT TRAJECTORY MODE 3 GEOMETRY
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cos eT = gin AT sin) + cos AT cos A cos p (B-13)

cos ¥ [(7 - By) + 6]

tank gy = tanklop + Oy - Vg TG TRy~ 3 (B-14).
. [ ] cos%[GI + (Ap - N1 :
L = . - -
cotX tank 1(w BT) + 8 cos%[el - (AT VY (B-15)
A = Tag (B-16)

With reference to Figure B-5, the equations applicable to Ascent Trajectory

Mode 4 are:

=1 ]tan A
n fan 2

LHA = si fon 1 (2-7)
T .
g = 9ty (2-10)
p =27 - QLS (B-17)
Y, = m-2(LHA) (3-1)
tan A, = sin(LHA -p )tan i (B-11)
cos ar = cos(LHA ~-p )sin iT (B-lZ)
sin(}_, - A) sin B
cosGT = sinAT sin) +cosAT cosA cosp (B-13)
_ . cosk[(n -BT) + 6]
tank Byt = team%[eI + (AT - 2] cosk (7 '5‘1‘) sy (B-18)
‘cos% lo; + (AT - M1
cotke = tank [(7 - BT) + 8] cosk o, - (AT Y (B-15)
AZ =TMT_E€ (B-16)

B-9
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With reference to Figure B-6, the equations applicable to Ascent Trajectory

Mode 5 are:

o= T7/2
QLS = we(td)n
.tanAT = gin{(o - QLS)tan iy
cosBT = cos(0 - QLS) sin iy
. sin(AT -A)sinBT
sin 6 = ~
sin®
I
coseT = 51nAT sini +>cosXT coSsA cosQLS

tan%eN = tank [61 + (AT - a1

ke = [ (m-
cotke = tank[(7 BT) + 6] Cos%[el - (AT

cosk (T -BT) + 5]

cos%[eI + (AT - A1

cosk[(n -8p) - 6]

A, =1 =¢

Z

With reference to Figure B~

Mode 6 are:

- M1

(B-19)

(2-10)

(B-3)

(B-5)

(B-6)

(B-7).

(B-14)

(B-15)

(B-16)

i

7, the equations applicable to Ascent Trajectory

g =m/2
s = eltydy
0 = 27 = QLS'
tan AT = gin(0 - p)sin iT

B-11

(B-19)

(2-10)

(B-17)

(B-20)



= ASCENT TRAJECTORY

TARGET ORBIT
GROUND TRACK

GROUND TRACK ==y
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<:osf§T = cos (0 « p)sin iT (B-21)
sin(A,_, - A)sinB
siné= T. L (B-6)
sin
1
cosGT = sin)\,f sinA + coslT cos\ cosp (B-13)
cosky [(qg - Bp) + 6]
‘ _ T (B-18)
tanoyr _“tan%[al T Oq - Wl cosk [(m - ) - ¢]
cosk¥[0. + (A - )] :
) 1 T (B=~15)
ey = i - o)
cot¥t = tany [(T - Bp) + ¢ cosiloy = Cap = Al
A =T._E (B-16)

B-14



APPENDIX C

ADDITIONAL EQUATIONS FOR COPLANAR ORBITAL TRANSFER MODES

This appendix presents a brief listing of the coplanar orbital transfer
modes generated by the Orbital Transfer Mode Matrix and any additional equations

that may be needed for their complete solution.

REFERENCE AXIS AND MAJOR AXIS
OF THE TRANSFER ELLIPSE

TARGET ORBIT

COPLANAR
PARKING ORBIT

Figure C-1. HOHMANN TRANSFER MODE

C-1



REFERENCE AXIS AND

MAJOR AXIS OF THE

TRANSFER ELLIPSE

TARGET ORBIT

b COPLANAR
¢ — PARKING ORBIT
TRA

(62 - 61) <mo<T

Figure C-2. MODIFIED HOHMANN TRANSFER MODE

NOTE: See Coplanar Gamma-Change Transfer Mode for the equations for

"Rendezvous at B''. P
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With reference to Figure C-3, the following equations are required for

"Rendezvous at B."

93 = 61 + n

94 = 27 = 63
R. - R

e = 2 ).

Rlcos 6, =~ R2 cose4

1

(1 - ez)%sina

1

4

sin E, = sin-1
= 1 1 +e cose1
-1 1 - ez)%sine1
El T §in 1 +e cose4
(1 - ez)%sin 94
sl E4 = 1+ e c0894
-1 (1 - ez)%sine
E4 = gin

M1 = E1 - e sin E1

C-3 -

M = E4 - e sin E4

1+ e cose4

(3-55)

(c-1)

(3-57)

(3-60a)

(3-60b)

(C-2a)

(C-2b)

(3-62) .

(C-4)
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(

'tF)

TRaNs = Mg - M)

B
) ‘,R3
2

brrans ="~ 92 (tpdrpans
e sin8
Y, = tan-’l — 1
1 1 +e cose1
M
( = ’ L
‘Vco)l Rl
A
(Ve)l'- R1 a
1
w, =l 2+ v )%= 2wy v )cosyy ]
1 Ve'1 Veo'l e’l  co’l 1
]
in0
e sin
Y = t;an'1 ——————ﬁ————
4 1+ e cose4
, _ u
cho)B R2
(ve)4 =

P
. 2 , 2 : 2
4 %vé)4 * (vco)3 h 2(ve)4 (vco)3 COSY4]

&
<
]

(AV)TRANS = AVl + AV4

C-&

(C-5)

(3-67)

(3-68)

(3-69b)

(3-70)

(3-71)

(3-72)

(C-6)

(3-74)

(C-7)

(c-8)

(C-9)



COPLANAR
PARKING ORBIT

REFERENCE

AX1S TARGET

ORBIT

MAJOR AXIS OF
THE TRANSFER
. ELLIPSE

0 < el‘<2n

(0, = 8) <n < (n ~6,)

Figure C-3. GAMMA-CHANGE TRANSFER MODE
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REFERENCE
AXIS

TARGET
ORBIT

COPLANAR
PARKING
ORBIT

Figure C-4, PARABOLIC TRANSFER MODE
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With reference to Figure Ce5, the following equations are needed for the

Concentric Three-Tmpulse Elliptic Transfer Mode.

R, ~ R
e =g 2 (3-57)
€086y - 2.cos 3
P=R,(1+e cosg,) (3-58)
2 = —> (3-59)
2
1 -~ e
1
{1 - ez)ﬁsinel
sin El =TT e 00361 (3-603a)
2. L
1 {1 -e )Zsine1
= sy 3..
El sin 17 e cosel « 60b)
(1 - e2)%sinQ3
sinE, = (3-61a)
1+ e c0583
2. %
1 (1 -e )Zsine3 .
E,= sin =~ (3-61b)
3 i+e cos@3
= - ] (3 2
Ml El e sin E1 (3~62)
My = E3 (3-63)
LtF}‘E = (M (Cc-10)
1
RP==chosen perigee radius of transfer ellipse 2
2
R2 - RP2
e, = §5—1f§~“ (¢-11)
P
2
_ RPz t Ry .
a = T (C-12)
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(C-13)

(C-14)

(3-67)

(C-15)

(3-70)

(3-71)
v, = [tan! ;*;iggégggz (3-69b)

5V, = [(v )f + (v )12 - 2(v ), (v )1cosv1]% (3-72)

e co e Cco

vy = :i§ﬂ= -~ (-16)
v, = %é? i Eﬁ" (c-17)
Wy = (v), - (v))) (C-18)
{‘vco:)3 = ‘i%'l—z- (3-75)
Wy = (v )g - (V) (¢-19)

£ 51’3I‘RANS = AV1 + AV2 + AV3 (C-20)



TRANSFER
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Figure C=3.
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CONCENTRiC THREE=-IMPULSE ELLIPTIC TRANSFER MODE
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With reference to Figure C-6, the following equations are needed for the

Bi-Elliptic Three-~Impulse Transfer Mode.

R2 - R
1cose1 - 2cose3
= R. 3-58
P Rl(l + e cosel) ( )
8 = — (3-59)
2
l-e
1 - ez)%sine1 ]
sin E1 =TT TN (3-60a)
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APPENDIX D
ADDITIONAL EQUATIONS REQUIRED FOR NON-COPLANAR ORBITAL TRANSFER MODES

This appendix presents the additional equations required to determine the
orbital transfer parameters if the point of departure and the point of arrival
on the fictitious target orbit (points a and A, respectively, in Figure D-1)

lie on the same side of the orbital line of nodes.

The position of the chaser at the end of required parking time, relative

" to the orbital line of nodes, is

8 ) (3-85)

cowy ~ “1'%park

The point of orbital transfer departure (a) and the point of arrival on
the fictitious target orbit (A), lie on the same side of the orbital line of

nodes when

[o +n] < (D-1)

COLN

Therefore, this method of accomplishing non-coplanar gross rendezvous, by a

given transfer mode, is permissible only when equation (D-1) is satisfied.

The time spent by the chaser in coasting from point A to point e along the

fictitious target orbit is
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Thus, the total chaser flight time from parking orbit departure to gross

rendezvous becomes

+ D-3
coplanar tgsigT ( ‘
transfer

(tedrpans = (tp)1mans

The total impulsive velocity increment required to effect rendezvous is

+ (AV)PC (D-4)
coplanar
transfer

(O qgpans = BV)qpans
where
(AV)PC =2(v-c°)3sin3§6 (D-5)

The above equations are also valid for the Mon-Coplanar Three-Impulse Transfer

Modes,



